
00
00
NDTIC ,C1ECTE Wft

~~ ~C I 011C FILE COPY
NOV 1419900< D

Real-Time Vergence Control for Binocular Robots

Thomas J. Olson David J. Coombs

Technical Report 348
June 1990

~ ~"TTENT'i A
1,07 putlic Tel*=" J

L zrUU0 UUJ.Zhed 1

UNIVERSITY OFROCH IR
COMPUTER SCIENCE

90 11,9--020



Dist. "A" per telecon Dr. Andre van
Tilborg. Office of Naval Research/
code 1133.

VHG 11/13/90

Real-Time Vergence Control for Binocular Robots
Accesion For

Thomas J. Olson* David J. Coombs NTIS CRAMI
olson@cs.virginia.edu coombs@cs.rochester.edu DI'C TAB

Unannounced L3
The University of Rochester Justifcatnon

Computer Science Department
Rochester, New York 14627 By a

Distrlbution-1
Technical Report 348 D isr bin Cdx~o4 i Avsaaility Codes

June 1990 Avail and I or
DIst Special

Abstract

In binocular systems, vergence is the process of adjusting the angle between the eyes
(or cameras) so that both eyes are directed at the same world point. Its utility is most
obvious for foveate systems such as the human visual system, but it is a useful strategy
for non-foveate binocular robots as well. This paper discusses the vergence problem and
outlines a general approach to vergence control, consisting of a control loop driven by an
algorithm that estimates the vergence error. As a case study, this approach is used to
verge the eyes of the Rochester Robot in real time. Vergence error is estimated with the
cepstral disparity filter. The cepstral filter is analyzed, and it is shown in this application
to be equivalent to correlation with an adaptive prefilter; carrying this idea to its logical
conclusion converts the cepstral filter into phase correlation. The demonstration system uses
a PD controller in cascade with the error estimator. An efficient real-time implementation
of the error estimator is discussed, and empirical measurements of the performance of both
the disparity estimator and the overall system are presented.
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1 Introduction

Recently a significant amount of work in computer vision has focused on the problems of
acting, behaving systems, and in particular on how "active vision" differs from analysis of
static scenes or vision with fixed cameras [Bajcsy, 1986; Aloimonos et al., 1987; Ballard,
1989- Bandopadhay, 1986]. In many cases, giving a vision system the abilityto move around
in its environment simplifies many previously intractable problems. Since the summer of
1988 the Rochester vision group has been working to develop an integrated facility for
the study of vision, Al and systems issues related to active vision. Briefly, the facility
consists of an industrial robot arm bearing a custom-built "head". The head has two CCD
television cameras which can be moved together in altitude (pitch) and independently in
azimuth (yaw). The head, arm and cameras are connected to a pipelined image processor,
a workstation and a set of large-scale parallel processors.

A major goal of our research is the development of a real-time gaze control system. We
believe that the robot must be able to maibtain fixation on world points or change fixation
from one world point to another with only minimal direction from high level "cognitive"
faculties. To tljis end, we are developing quasi-reflexive gaze control mechanisms that
maintain fixation on smoothly moving targets while compensating for egomotion, and make
saccadic movements to targets selected by higher level processes. We envision the gaze
control mechanisms forming a layered, modular control structure along the lines described
by Brooks [Brooks, 1986; Brooks, 1987], although we suspect that more sensor fusion may
be required than has been employed in systems of this type in the past. The details of
the control structure and module interactions are a current research topic [Brown, 1990b;
Brown, 1990a; Brown, 1990c; Coombs, 1989a], but preliminary work has identified some
promising approaches to the various subproblems [Brown et al., 1988].

This paper describes the design, implementation and performance of a module respon-
sible for controlling the vergence angle of the cameras. The next section discusses vergence
in the abstract, presenting reasons for verging and issues that any vergence control system
must address. This discussion leads to a general strategy for vergence control, described in
Section 3. Sections 4, 5 and 6 describe the application of this vergence control strategy to
the problem of controlling vergence on the Rochester Robot, and present empirical results
on the performance of the error estimator and the overall vergence system.

2 The Vergence Problem

The vergence angle of a binocular system is the angle between the optic axes of its eyes
or cameras. The vergence angle, baseline (or inter-ocular distance) and gaze direction of
a binocular system determine a particular fixation point, as shown in figure 1. Narrowly
speaking, the function of the vergence system is to control the distance from the cameras
to the fixation point along some specified gaze direction. In most cases the motivation
for vergence is to keep the fixation point near some target object. Thus, the vergence
problem can be defined as that of controlling the vergence angle to keep the fixation depth
appropriate for the current gaze target. Since the target vergence angle is directly related
to target depth, any sensory cue to depth or depth changes may be useful to the vergence
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Figure 1: The goal of vergence is to keep the eyes or cameras fixed on a common world point
or visual target, independent of changes in gaze angle and target distance. The distance to
the world point, the length of the baseline (or inter-ocular distance) and the gaze angle 0g
combine to produce a desired vergence angle 0t. In order to keep the world point fixated,
the vergence system must generate an actual vergence angle matching the desired angle.
The result of fixating a target is that the object lies near the horopter, which is the set
of world points whose disparity is zero. The stereo images of an object that lies near the
horopter have a narrow range of disparities.

system. The most commonly used cues are disparity and focus error, but other depth cues
(such as motion, texture, shading, etc.) can also be used, as can information about depth
changes (measured or predicted self motions, dilations or contractions of the visual field,
and so on).

Vergence is one aspect of the larger problem of gaze control, which involves control of
the gaze angle and focal depth as well. The larger problem can be broken down functionally
into the subproblems of gaze stabilization and gaze shift. Stabilization involves maintaining
fixation on a possibly moving visual target from a possibly moving gaze platform. Gaze
shifts, usually called saccades, transfer fixation from one visual target to another. Vergence
control must meet different demands in each of these activities. During stabilization, a
change in the target position relative to the observer produces a smooth change in the
desired vergence angle. A saccade transfers the fixation point almost instantaneously from
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one visual target to another, producing a step change in the desired vergence angle.

The treatment of vergence presented here reflects current models of vergence in primates.
Primate visual systems exhibit sophisticated vergence responses that meet the varied de-
mands of the vergence task. Recent experiments have challenged traditionally held views
(e.g., those of Yarbus [Yarbus, 1967]) of ocular vergence and its control. It has been thought
that vergence changes are always smooth and much slower than smooth pursuit (tracking)
movements, and that vergence changes required to shift gaze to a target are achieved by
smooth vergence movements superimposed on conjugate (equal and symmetric) saccades in
the two eyes. Under natural viewing conditions, however, Erkelens et al. [Erkelens et al.,
1989a; Erkelens et al., 1989b] observed in humans not only smooth vergence movements
rivaling the speeds of other smooth eye movements, but also vergence changes mediated al-
most entirely by saccades that incorporated a vergence change explicitly, rather than merely
superimposing symmetric saccades on smooth vergence movements. Similar behaviors have
also beei, observed in monkeys [Maxwell and King, 1990].

2.1 Related Work

The recent surge of interest in active vision has produced a growing body of literature on
vergence and gaze control for robotic vision systems. Clark and Ferrier [Clark and Ferrier,
1988] built a gaze control system based on the model described in [Robinson, 1987]. The
system acquires and tracks white and black blobs using the first few moments and intensity
value of each object. The mechanical design of their head decouples the control of the gaze
and vergence angles. The gaze angle is controlled by rotating the head about its neck,
and the cameras are verged symmetrically by a mechanical linkage. This aspect of the
design prevents intermingling the control of vergence and gaze angles, and vergence control
follows the model of Yarbus. Vergence has recently been used cooperatively with focus and
stereopsis for surface reconstruction [Abbot and Ahuja, 1988] and active exploration of the
environment [Krotkov, 1989]. It has demonstrated advantages in both robustness of results
and increased speed in stereoscopic processing.

2.2 Why Verge?

Part of the motivation for studying vergence comes from an interest in human vision: human
eyes verge, and we would like to know more about how they do it. The human visual system's
need for a vergence control system is obvious, and follows from the extremely non-uniform
spatial resolution of the photoreceptor array. Vergence movements allow humans to register
an object of interest on the fovea (central, high-resolution region of the retina) of each eye,
so that the greatest possible amount of information about the object can be extracted.

Currently most robot vision systems do not have foveas, and so the most obvious moti-
vation for vergence control in humans does not apply to them. However, vergence has many
advantages even for systems without foveas.

Mathematical Simplification: Fixating an object of interest puts points on the object
near the optic axis in both eyes. In some cases this permits the use of simplify-
ing assumptions (e.g. replacing perspective projection with orthography) that make
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analysis significantly easier. For example, Ballard and Ozcandarli [Ballard and Oz-
candarli, 1988] used this fact to develop a simple and efficient kinetic depth estimator
for systems that fixate.

Facilitating Stereo Fusion: By definition, the fixation point has a stereoscopic disparity
of zero, and points nearby tend to have small disparities. This makes it.possible to use
stereo algorithms that accept only a limited range of disparities. Such systems can be
very fast, and are amenable to hardware implementation [Mead and Mahowald, 1988].
Olson is currently working on a stereo system that has high spatial resolution at small
disparities and lower resolution elsewhere [Olson, 1990]. This allows the system to
devote the bulk of its resources to areas of interest without losing track of the rest of
the scene.

Useful Coordinate Systems: As Ballard argues [Ballard, 1989], having a unique fixation
point at the intersection of the visual axes defines a coordinate system that is related
as much to the object being observed as it is to the observer. It is thus a step in the
direction of an object-centered coordinate system.

Disparity-based Segmentation: On the assumption that gaze will normally be directed
toward objects of interest, it may be appropriate for binocular agents to ignore " atures
at large disparities. That is, disparity may be used to filter objects that are not
currently of interest out of the scene. Figure 2 shows an example of this sort of filtering.
There is some evidence that biological visual systems filter images precategorically
using disparity information. The gain of the optokinetic effect seems to be modulated
by disparity [Howard and Simpson, 1989], and Miles et al. [Miles et al., 1990] have
proposed that primates might use disparity information to help parse optical flow.

An argument can be made for the ultimate necessity of non-uniform resolution, in order
to provide both high resolution and a wide field of view [Tsotsos, 1987]. Thus future
robot systems may be equiped with foveas. If so they will require vergence systems for
the same reasons that humans require them. Work on spatially-variant visual sensors is
beginning [Van der Spiegel et al., 1989; Tistarelli and Sandini, 1990], so it may become
possible to build camera systems with foveas in the near future.

3 A General Strategy for Vergence Control

At the most abstract level, any-.solution to the vergence problem will have three major
components, as shown in Figure 3: a sensory system that determines how the current
vergence angle differs from the ideal, a controller that generates a response to the errors,
and a motor system that executes the controller's commands. These three components can
be mapped onto the traditional block diagram of a feedback system, shown in Figure 4.
The input to the system is the desired vergence angle, Ot. The error estimator and cameras
or other sensors correspond to the summation unit in the block diagram. Their function is
to compare the actual vergence angle 0 to the target angle Ot to produce a residual error
0,. The controller converts that error to a set of control signals that direct the camera
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a) b) c)

Figure 2: Using disparity to filter a scene. Images a) and b) above show right and left
camera views of a scene containing objects at several disparities. These frames were factored
into laplacian pyramids [Burt and Adelson, 1983], after which each pixel in the left image
pyramid was rescaled by a factor of one minus the normalized difference between it and
the corresponding pixel in the right pyramid. Reassembling the left pyramid produced
image c). Since pixels in a laplacian pyramid represent corrections to values inferred from
lower spatial frequency information, the effect of the filter is to suppress high frequency
information associated with objects at high disparities.

motors (i.e., the plant) to produce appropriate changes in 0. This section discusses general
considerations in the design and use of these three components.

3.1 Motor System

The quality of the motor system or plant is determined by how quickly and faithfully it
translates control signals into changes in vergence angle. Current generation CCD cameras
and motor controllers make it relatively easy to move the cameras quickly. Care is required,
however, to insure that the camera mounting is able to tolerate the stresses generated by
rapid eye movements. The large accelerations required for saccadic movements can cause
"ringing", i.e. vibrations that persist after the motors have come to a stop. Avoiding these
problems involves mechanical engineering considerations that are beyond the scope of this

paper, so we will not discuss them further.

Another aspect of motor system design that is important for vergence control is the
number of degrees of freedom offered by the hardware-that is, what parameters of the
camera position are controllable. A number of systems in current use (e.g. [Clark and
Ferrier, 1988; Krotkov, 1989]) constrain the gaze angle to be at right angles to the baseline.
In this type of system vergence angle is controlled by a single motor that converges both
cameras symmetrically via a mechanical linkage, such as a rack and pinion driving a pair
of levers that rotates the cameras about vertical axes, as sketched in Figure 5. Gaze angle
can be altered by rotating the entire system about vertical and horizontal axes through the
center of the baseline. The advantage of this design is that gaze angle and vergence angle are
controlled by separate motors and are orthogonal-either parameter can be altered without

. . . .• i I I I i i5
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Figure 3: Schematic diagram of the vergence system.
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Figure 4: Block diagram of the vergence system.

disturbing the other. This makes them well suited to traditional models of gaze control, in
which vergence is considered to be largely independent of other types of eye movements.

An alternative design mounts the cameras together on a platform that can be tilted
up and down, and allows each camera to pan from side to side independently (e.g., the
Rochester Robot [Brown et al., 1988], sketched in Figure 6). With this design, the gaze
angle and vergence angle are no longer independent. Vergence angle is equal to the difference
between the two camera angles, and gaze angle is a function of both camera angles. This
design lends itself well to systems in which vergence control is tightly integrated with other
types of eye movements. It would also support systems that directly control the positions of
each camera without explicitly controlling the vergence angle, allowing vergence to emerge
from the eye ;- itions. A rn7hanical a",-nt;ge of this design is its simplicity: the compact
mechanism and fairly direct linkages facilitate rapid saccades.

Another important aspect of the mechanical design is the relation of the axes of rotation
to the nodal points of the cameras. The nodal point of a camera is the point about which
a camera rotation results in a pure translation of the image projected on its image plane.
It corresponds to the pinhole of a pinhole camera, or to the front nodal point of an ideal
thick lens system [Horn, 1986]. The image translation induced by rotation about the nodal
point is a function only of the projected image and the rotation, and is independent of the
depth of the object being imaged. For the purposes of gaze control it is desirable to mount
the cameras so that their axes of rotation pass through the nodal points. Doing so makes
it possible to predict the effects of a rotation without knowing the depths of objects in the
scene.

If the axes of rotation do not pass through the nodal point of the camera system, each
camera movement necessarily includes a small translational component as well as the desired
rotation. For example, changing the vergence angle will alter the baseline of the camera
system, complicating the depth computation for large disparities. Unfortunately, designing
a system that rotates the cameras about their nodal points is difficult. The camera pivots
may be far from the camera's center of gravity, and the nodal point moves when the lenses
are changed or moved to adjust focus. However, the nodal point does not move very far,
and the distortion induced can often be ignored.

7



rack and pinion

vergence motor

pitch motor

yaw motor

Figure 5: Independent gaze and vergence controls are provided by separate motor systems.
(This sketch is designed for illustrative purposes rather than compactness of mechanism.)

pitch motor

yaw motors

Figure 6: Gaze and vergence controls are combined by this design.
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More sophisticated binocular systems may have several other control parameters to
consider. One is focus depth. Interactions between focus depth and vergence angle have
been explored recently in robotic vision experiments (Abbot and Ahuja, 1988; Krotkov,
1989]. Another possible degree of freedom is torsion, i.e. rotation about the optic axis.
Torsional movements can be used to stabilize gaze against head rotations about an axis
parallel to the gaze direction. Torsional stabilization in humans can be readily observed
by watching one's eyes in a mirror while rolling the head-from side to side. Torsional
movements also serve to align the vertical axes of the cameras when gaze is directed up
or down from the horizontal plane. An example of such a misalignment can be seen in
Figures 2a and 2b: the two images of the can are slightly tilted with respect to one another.
This type of misalignment cannot be corrected in the Rochester Robot since its head has
no torsional degree of freedom. Torblon control and measurement of torsion error provide
information that can be used to help judge the tilt of an object toward or away from the
observer 'Mayhew and Longuet-Higgins, 1982).

3.2 Controller

A critical parameter in the design of a vergence control system is the nature of the input
signal - how the target angle Ot changes with time. This will depend to some degree on
details of the system design, particularly the nature of the processes responsible for other
aspects of gaze control and movement. In the absence of detailed information about these
processes, it seems reasonable to base our expectations on the known characteristics of
human eye movements [Yarbus, 1967], and on the general view of gaze control described in
Section 2. That is, we expect eye movements to consist of intervals of smooth pursuit or
fixation punctuated by discontinuous jumps (saccades).

The two types of expected changes in target angle differ in fundamental ways. During
pursuit and fixation, changes in target angle are determined by the dynamics of observer
and object motion. The laws of physics restrict what can happen; for example, accelerations
and velocities must be finite. Furthermore, although a target may cross the visual field with
high velocity, rapid changes in target vergence angle will be rare. Rapid changes in target
angle correspond to very rapid movements in depth (especially near the observer), so the
target will soon pass through the image plane (if it is approaching) or recede to a depth at
which target angle changes more slowly (if it is moving away from the observer.) In short,
the input to the control loop during pursuit and fixation will be smooth, with finite second
derivatives and small first derivatives.

During a saccade the input signal will behave quite differently. A saccade can produce
a step change in the desired vergence angle, as well as a discontinuity in its temporal
derivative. The magnitude of these changes may be predictable if the saccade is to a
previously visited target, or if target depth and relative motion are approximately known
from other depth cues. At the very least, the fact that a saccade is occurring can serve as
a warning that discontinuities in the input signal are to be expected.

The fact that there are two distinct types of changes in desired vergence angle suggests
a need for two modes of control. The normal operating mode should be optimized for the
smooth, continuous changes expected during pursuit and fixation. Saccadic movements

9



should replace the smooth movements of the normal conitrol loop with brief intervals of
what is sometimes called "bang-bang" control. That is, the estimated error should be
corrected by an open-loop move to the new desired vergence angle at the maximum rate of
which the motor system is capable. The open-loop vergence correction can be performed
during the saccade, if the distance to the saccade target is known; if not there will be
some delay while the error estimator determines a new target -angle. The error estimator
may need to be suppressed during a saccade, because of the possibility that motion blur
and/or shearing deformations (caused by camera movements during a single video frame
interval) may corrupt the results. Before the normal control loop is restarted, it should be
reinitialized to prevent any tendency to smooth target angle velocity across the saccade.
The details of how this is done will of course depend on the natures of the smooth control
loop, the underlying hardware and the saccade generating process.

3.3 Error Estimator

In order to keep the eyes verged on a target, the vergence system must measure the current
vergence error (and, perhaps, its derivatives.) The most important source of this informa-
tion is the visual system, but other sources may also be useful. We have already noted the
possibility of predicting the error that will result from a saccade to a target of known depth.
Vergence changes due to self motion can also be taken into account, either by making pre-
dictions based on planned, voluntary head movements, or by sensing head accelerations via
the vestibular system (as in the human vestibulo-ocular reflex.) However, vision is the only
source of information for target motion, and visual cues also provide the ultimate measure
of vergence performance. The rest of this section, therefore, is restricted to consideration
of visual error estimators.

A number of different types of visual information are available for estimating vergence
error. One feature that is correlated with desired vergence angle under ordinary conditions
is blur, which has been used cooperatively with vergence and stereo to construct depth
maps [Abbot and Ahuja, 1988; Krotkov, 1989]. Any depth cue can be used if the absolute
vergence angle of the system is known, because desired vergence angle is a function of target
distance. Humans apparently make use of cues that may indicate change in depth, since
changes in the size of a visual target induce transient vergence responses [Erkelens and
Regan, 1984].

The most useful visual cue to vergence error, however, is binocular disparity. The map-
ping from disparity to vergence error is particularly simple, and (unlike monocular depth
cues) does not require knowledge of the absolute vergence angle of the system. Reliable dis-
parity estimates can be computed more easily and quickly than depth estimates, permitting
shorter processing delays and simpler control strategies. These advantages may be reflected
in the structure of the human vergence control system; although vergence in humans can be
driven by a variety of cues, responses are much slower under monocular viewing conditions
than they are when disparity information is available [Erkelens et al., 1989b].

Disparity measurement has been studied extensively in the context of stereo depth recon-
struction [Barnard and Fischler, 1982]. Unfortunately most of the disparity estimators used
for stereopsis are poorly suited to the real-time vergence application. They are optimized
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for positional accuracy and density rather than for robustness, and depend on optimization
of global criteria to yield a more robust disparity field. They cannot provide single dis-
parity estimates without essentially solving the stereo problem, which entails considerable
computational expense.

For real-time vergence what is needed is a simple algorithm that estimates a single
disparity in a fixed amount of time. This narrows the field to image processing methods
such as cross-correlation. Past attempts to use such methods for stereo depth recovery have
uncovered many problems (see [Horn, 1986] for a review). However, a class of operators that
are closely related to correlation appears to work quite well for vergence. These operators
are described in Section 5 and the appendices. If correlation methods prove too slow, related
methods such as phase comparison [Jepson and Jenkin, 1989] may be suitable, provided that
care is taken to detect and compensate for various predictable errors [Fleet et al., 1989].

Handling Multiple Disparities

An important issue in correlation-based disparity estimation for vergence concerns the han-
dling of scenes with multiple disparities. It is tightly linked to the selection of sample
window size. The sample windows must be large enough to handle the expected range
of disparities, but this almost guarantees that multiple disparities will be present at least
some of the time. Therefore, some additional processing will almost certainly be required
to insure that the desired correlation peak dominates the output.

The success or failure of a vergence system is determined by how well it maintains fixa-
tion on a designated target object. Therefore, an obvious way to improve the performance of
the error estimator is to filter the input images so that the target object is more prominent.
If detailed information about the target location is available, the image can be multiplied by
a mask that emphasizes details near that location. A simpler approach is to let the target be
designated implicitly by one of the eyes. That is, consider one of the eyes to be dominant,
and define the region near its optic axis to be the target. This strategy requires only that
the dominant eye image be multiplied by a centrally weighted mask before correlating.

Another masking strategy arises from disparity-based segmentation. First, the two sam-
ple windows are processed by a derivative operator in the horizontal direction, producing a
pair of vertical edge images. The images are then combined by a multiplicative or 'ANDing'
operator that attenuates pixels that are weak in either image and amplifies pixels that are
strong in both images. This produces an image containing only edges that appear at the
same location in both images. Thus, this zero-disparity filter passes only edges that lie in
the horopter, or "shell" of zero disparity (illustrated in figure 1) plus some possible aliased
(accidentally aligned) edges. Figure 7 demonstrates the effect of this filter on a real scene.
The zero-disparity image is then blurred and used as a mask, preemphasizing points that
are at small disparities, as proposed in [Coombs, 1989b].

Another strategy is to perform the ANDing operation several times, incorporating rmall
rightward and leftward shifts of one of the images. This produces a series of images that
contain edges on several closely spaced pseudo-horopters. Counting the number of 'on'
pixels in each depth plane gives an estimate of the average disparity of pixels near the
horopter, which can be used to derive a vergence error estimate.

11
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Figure 7: Image a) shows images from the two cameras superimposed by pixelwise intensity
averaging. The left and right camera views were processed with a vertically oriented Sobel
operator to produce a pair of stereo images of vertical edges. These images were combined by
a pixelwise multiplicative 'AND' operator to produce image b). The multiplicative operator
has the effect of attenuating pixels that are weak in either image and amplifying pixels that
are strong in both images. It thus tends to suppress edges that have non-zero disparity,
leaving an edge image that is dominated by objects at the horopter.
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Figure 8: Hardware configuration used for vergence control experiments on the Rochester
Robot.

These disparity filters can be performed at video rates with relatively inexpensive hard-
ware. Moreover, the combination operator (as well as the edge operator) can be designed to
accentuate or suppress weaker edges, edges at particular orientations, etc., to suit the de-
sired application. For instance, a "zero-disparity" filter that is used as a mask to emphasize
objects in the horopter for vergence should be broadly tuned to "thicken" the horopter, so
objects will remain visible in the near vicinity of the depth of gaze. It should also pass only
vertical edges since these supply the most information for a disparity estimator. However,
a family of disparity filters that is used to derive a depth estimate might work better if each
member filter is narrowly tuned.

4 Vergence on the Rochester Robot

The general considerations discussed in the preceding sections formed the basis for the
vergence system used on the Rochester Robot. This section and the two that follow describe
the motor, sensory and control components of the system, and discuss its performance as
measured in the laboratory.

We begin by summarizing those aspects of the Rochester Robot's cameras, motor system,
and computing resources that affected the design of the vergence system. A more detailed
description of the robot and laboratory resources is given elsewhere in this issue. Figure 8
shows a block diagram of those parts of the system that are involved in vergence control.

As illustrated in Figure 6, each of the robot's two cameras is panned from side to side
by its own motor. As discussed in Section 3, this type of system facilitates rapid saccades
at the cost of some increased complexity in the control system, which arises from the non-
orthogonality of the vergence and gaze angles. A third motor serves to pitch the cameras
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up and down, i.e., to rotate them about their baseline. These three motors can generate
saccades with peak speeds of more than 400 degrees per second. Reduction gearing gives
the cameras theoretical angular resolutions of 1/278 degree in yaw and 1/2500 degree in
pitch. Gear lash reduces the resolution to an unknown degree, but camera positioning is
still accurate to substantially better than the angle subtended by one pixel with the 16mm
lenses that are normally used.

The mechanical design of the camera platform is such that the nodal points of the
cameras do not lie precisely on the axes of rotation. This means that eye movements
necessarily include a small translational component as well as the desired rotation, so that
(for example) increasing the vergence angle slightly reduces the baseline of the camera
system. For most purposes the translational movement can be ignored, although its effects
were noticeable in the experiments described below.

The host computer for the robot commands the motors via intelligent stepping motor
controllers that allow the control program to issue commands in terms of absolute posi-
tion, relative position, velocity or velocity profile. The ability to issue buffered velocity
commands enables the control program to generate smooth movements without paying
constant attention to the motors.

The EUCLID digital signal processing microcomputer included in the MaxVideoTMimage
processing system was used for estimating disparity. The EUCLID computer is based on
the ADSP-2100 digital signal processor [Analog Devices, 1987], which is optimized for op-
erations such as convolution, finite impulse response filtering and Fast Fourier Transforms.

The mechanical design of the motor and camera system was dictated by a desire to
perform saccadic movements at speeds comparable to those of humans. It seemed probable
that a camera platform powerful and rigid enough to perform saccades quickly and without
noticeable ringing would be able to handle the gentler movements required for vergence with
relative ease. To date this has proven to be the case, and the performance of the vergence
system has been limited by the speed and accuracy of the error estimator rather than the
capabilities of the motor system.

5 Error Estimation

The vergence error estimator is based on disparity, since (as argued in Section 3) dispar-
ity is the most direct and reliable measure of vergence error. One approach to disparity
estimation would have been to use the MaxVideoTM convolution/correlation hardware to
compare central patches of one image to the other image. However, previous attempts in
our lab to use that approach -for tracking had encountered many difficulties. Instead the
disparity estimator, previously described in [Olson and Potter, 1989], is based on the cep-
stral filter [Yeshurun and Schwartz, 1989]. The cepstral estimator performed well from the
beginning, but the reasons for its success were initially unclear. Our efforts to achieve a
better understanding of the algorithm led us to an interpretation of the cepstral disparity
estimator as one of a family of operators of which phase correlation [Kuglin and Hines,
1975] is a logical endpoint. This section describes the basic operation and performance of
the cepstral disparity estimator. The reasons for its success and its relationship to phase
correlation are explored in Appendix A.
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5.1 Measuring Disparity with the Cepstral Filter

The cepstrum of a signal is the Fourier transform of the log of its power spectrum'. It was
developed by Bogert et al. [Bogert et al., 1963] as a tool for analyzing signals containing
echoes. Such signals can be modeled as an original signal S(t) convolved with a train of
impulses, i.e.,

R(t) = S(t) * ((t) + aob(t - to) + al (t - ti) +...)

where * denotes convolution. Taking the log of the power spectrum transforms the received
signal into a sum of two terms, one of which depends only on S(t) and the other of which is
a combination of distorted sinusoids with frequencies related to to, ti, etc.If the cepstrum
of S(t) does not overlap the frequencies of the echo terms, conventional linear f,:tering
techniques can be used to extract the values of the echo delays.

Rece. tly Yeshurun and Schwartz [Yeshurun and Schwartz, 1989] developed a way of
using thy. two-dimensional cepstrum as a disparity estimator. The first step of their method
is to extract sample windows of size h x w from the left and right images. The sample
windows are then spliced together along one edge to produce an image of size h x 2w.
Assuming that the right and left images differ only by a shift, the spliced image may be
thought of as an original image at (0, 0) plus an echo at (w+dh, d,), where d h and d, are the
horizontal and vertical disparities. The periodic term in the log power spectrum of such a
signal will have fundamental frequencies of w + dh horizontally and d, vertically. These are
high frequencies relative to the window size. The image-dependent term, by contrast, will
be composed of much lower frequencies, barring pathological images. Thus, as Yeshurun
and Schwartz show, the cepstrum of the signal will usually have clear, isolated peaks at
(±(w + dh), ±d,).

5.2 Implementation

Early experiments with a workstation-based implementation of the cepstrum showed that
it was robust enough for the vergence application, provided that the sample windows were
of adequate size. The smallest acceptable size was found empirically to be 32 x 32, obtained
by subsampling over central 256 x 256 regions of the left and right input images. Unfortu-
nately, even at this greatly reduced resolution the original implementation required a few
seconds per computation on the Sun that acts as the robot's system controller. In order
to obtain a more useful sample rate the algorithm was re-implemented on the MaxVideo
image processing system. The images are formed by the robot's CCD cameras, which are
synchronized so that right and left images reflect the state of the world at the same point
in time and become available simultaneously. The video signals are digitized and convolved
with anti-aliasing filters (Gaussian, a = 2.5 pixels) before being stored in frame buffer
memory. The EUCLID DSP microprocessor then subsamples the images and computes the
cepstral disparity estimate. The cepstral estimator incorporates a number of optimizations
suggested by our analysis and summarized in Appendix B. The final implementation com-
putes the cepstral disparity estimate for 32 x 32 windows in approximately 51 milliseconds,

1This is sometimes referred to as the power cepstrum to distinguish it from the complex cepstrum, which
is the Fourier transform of the complex log of the Fourier transform
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Figure 9: Gepstral disparity estimator sample input and outputs. At top are two 32 x 32
subsampled images taken by the left and right cameras of the Rochester Robot. Below
is a surface plot of the power spectrum of the cepstral filter implementation described in
Appendix B. The central peak, which is due to the autocorrelation of the joint image, has
been truncated for display. The smaller peaks at left front and right rear give the disparity.
Note the splitting of the foreground peak due to the presence of multiple disparities. The
dominant disparity in this case is that corresponding to the textbook at the rear of the
scene.

not including digitization time or the 8 ms required to acquire the VME bus and read the
sample arrays from the frame buffer. Figure 9 shows a sample input and a plot of the
cepstral output.

Although the implementation described above is adequate for some purposes, its ac-
curacy is limited by the coarse quantization of the sample windows. For example, with
the standard 16mm lenses each pixel in the subsampled cepstral output subtends about 27
arc minutes, or nearly half a degree of visual angle. The current! -implementation obtains
sub-pixel resolution by first finding the peak pixel value in the cepstral output region and
then interpolating to better localize the disparity peak. Only the scan line containing the
peak value is considered, reducing the problem to 1D peak finding. The 1D sample set
is modeled as a discrete approximation to a delta function (i.e. a rectangle of width one
pixel and unknown height) sampled by integration over adjacent regions of width one pixel.
Thus the output of a given sample as a function of disparity should be the convolution of its
rectangular sampling window with the rectangular disparity pulse, i.e. a triangular pulse
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Figure 10: Cepstral output sample responses. At left are right and left camera views of
a simple scene. At right is a plot of pixel value versus vergence error in degrees for three
adjacent pixels.

whose base is two pixels wide. The interpolation strategy suggested by this model is to
return the centroid of the peak pixel and the larger of its two neighbors.

The assumptions underlying the interpolation strategy were tested by recording values
of the output samples as a function of sub-pixel disparities generated by moving the cam-
eras while viewing a static scene. Figure 10 shows the responses of three adjacent output
samples to a simple scene. The responses have the predicted shape and slope, showing
that the model is an accurate description of what happens with real scenes. However, the
triangular pulses are broadened slightly at the base. In practice this means that the inter-
polation strategy described above will produce discontinuities in the estimated disparity at
the crossing point of the response curves for. the left and right neighbors.of the peak. In
our implementation these discontinuities are avoided by incorporating a variable fraction
of the smaller neighbor into the centroid. The fraction is equal to one minus the difference
between the two neighbors divided by the difference between the smaller neighbor and the
peak, or:

- max - minpeak - min
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versus actual disparity. Data were taken with 16mam lenses, giving a total field of view of
27 degrees. Sample windows used to compute the cepstral estimate were 14 degrees wide.
Dotted line shows ideal response, solid shows measured response.

5.3 Performance of the cepstral disparity estimator

The implementation of the cepstral estimator described above was tested in the laboratory
on several scenes. For each test, the robot was directed to face the scene and the cameras
were manually adjusted to approximately the correct vergence angle for the scene. Taking
that anglne sho or zero-disparity position, the test program then swept the cameras
over a range of vergence angles. At each position it recorded the actual disparity (repre-
sented by the difference between the commanded position and the home position) and the
disparity reported by the cepstral estimator running on the EUCLID DSP computer.

Since the home position was only approximately correct at the start of each run, most
runs showed a systematic error of one or two pixels. In the plots below, these biases were

removed by adding a constant that minimizes the RMS deviation from the ideal x = y
response. Figure 11 shows results of a test run on a nearly ideal scene consisting of a
balloon against a contrasting background. The estimator falls badly at the extremes of its
range, because at disparities exceeding ±7 degrees the target object is no longer visible in
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Figure 12: Performance of the cepstral disparity estimator on a more complex scene. Dotted
line shows ideal response, solid shows measured response.

both sample windows'. Within a ±7 degree range, however, performance is good. The RMS
error is 0.57 pixels, which (with the standard 16mm lenses) corresponds to 1.86 arc minutes.
In other words, the estimate is accurate to a little more than half the width of an image
pixel. This is quite good, particularly in view of the fact that the cepstral implementation
subsamples by a factor of eight. Relative to its sample window resolution, the cepstral RMS
error is on the order of one sixteenth of a pixel.

Figure 12 shows results from a more typical laboratory scene. Although the plot looks
similar to that in the previous figure, the RMS error for this test was 1.31 image pixels
(4.44 arc minutes). The loss of accuracy is primarily due to a small error in the empirically
determined constant multiplier used to convert error in pixels to error in degrees. Because
the axes of rotation of the cameras do not pass through their nodal points, the nodal points
undergo some translation when the cameras rotate. This means that the conrversion constant
has a small dependence on the depth of the target. Compared to a best-fit straight line,
this data set has an RMS error of 0.64 pixels (2.24 arc minutes), roughly comparable to
the results in the ideal case. The systematic error could be removed by taking target depth
(inferred from current eye position and approximate disparity) into account when converting

2 Errors of this type can be detected with high probability because they result in anomalous vertical
disparities. The control software can use anomalous vertical disparities as a warning to disregard the
measured horizontal disparity, and perhaps trigger a reaquisition process.

19



from pixels to degrees. This has not been necessary to date, because small errors at large
disparities have a negligible effect on the performance of the control loop. High accuracy is
important only at disparities near zero, where errors or discontinuities can cause the target
angle to overshoot or oscillate around the desired value.

6 Control

The goal of the vergence system is to generate smooth eye movements that correct the
vergence error. The vergence control loop consists of three stages: digitization, error es-
timation, and error correction. Digitization is done under control of the SunTMhost using
the MaxVideoTMdigitizers, convolvers and frame stores (one each per camera). It takes
between one and two RS-170 frame times (33 to 67 milliseconds), depending on how much
time remains in the current video frame when the command to acquire the next frame is
issued. The Sun is free to do other things during digitization. Once the images are available
in the frame store, the Sun signals EUCLID to extract the images from the frame buffers
and estimate the disparity. This process takes approximately 59 milliseconds, after which
EUCLID places the disparity estimate in a known location in shared memory and issues
an interrupt to signal completion. The Sun converts the pixel disparity to angular coordi-
nates by multiplying it by an empirically determined constant, and executes the control law
to issue the appropriate velocity command to the eye motors. The Sun issues the motor
commands after initiating the next digitization in order to allow digitization to proceed
concurrently with motor control. This causes a slight delay in issuing the motor commands,
but permits a substantially higher overall sampling rate. Figure 13 illustrates the timing of
the vergence loop. The loop consistently takes 3 frame times tJ complete. Thus, the system
achieves a servo rate of 10 Hz3 .

6.1 The Controller

The vergence system uses a proportional-derivative (PD) controller (e.g., see [Dorf, 1980])
in cascade with the eye motor in a feedback ioop, as shown in figure 14. (Although the
target and actual vergence angle are continuous variables, since the entire system under
our control is digital or presents digital interfaces we model the system discretely.) The
summation node that produces the error signal represents the process of estimating vergence
angle error from the disparity of binocular images acquired from the cameras. The controller
gains were chosen empirically to obtain slightly underdamped response, resulting in a small
overshoot in the step response. The system controls the velocities of the motors to achieve
smooth responses to smoothly varying stimuli; controlling the accelerations explicitly would
require more computational expense and constant attention of the Sun host.

3 Since disparity estimation takes 59 ms, the maximum theoretical servo rate is 15 Hz. Attempts to attain
this rate have been thwarted by technical difficulties with capturing images and issuing motor commands
concurrently with estimating disparity.
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a - Set up frame buffers to capture images

b - Issue motor commands

c - Frame buffers capture images

d - Fork cepstral disparity estimator on EUCLID

e - EUCLID grabs subsampled images and estimates disparity

NB: times are approximate, for illustrative purposes.
Figure 13: Vergence Loop Timing Diagram

Since the system directly estimates only the vergence angle error 0,, an estimate of its
derivative, 6e, is numerically derived using the approximation

Oe(kT) = O,(kT) - O(kT - T)

T

where T = lOOms. This approximation obviously enhances any noise already in the estimate
of vergence error, 0,. One could employ an a-03 tracker or optimal linear predictor (e.g.,
Kalman filter) to smooth the estimates of 0, and/or 6, [Bar-Shalom and Fortman, 1988].

6.2 Performance

The demonstration system's responses to step and sinusoidal stimuli were measured in the
lab. Representative camera angle traces of step and sinusoidal responses are shown in
Figures 15 and 16. Figure 17 summarizes the system's response to sinusoidal stimuli of
frequencies up to 2 Hz. For ease of measurement, the system was not run in the normal
mode of compensating for half the error with each camera, but rather one camera alone was
moved to correct the entire error and the angle of this camera was recorded.

The step stimulus was produced by manually misconverging the "verging" camera prior
to starting the system. The same effect could be achieved by misconverging the camera in
the dark and then switching on the lights suddenly at time 0. In the response (Figure 15),
observe the single time step (0.1 second) latency in detocting the disparity. As a consequence
of this delay, the estimated disparity is seen to lag behind the camera's convergence angle,
even though this disparity estimate provides the error signal that drives the vergence system.
The small overshoot results from slight underdamping.

The effect of the proportional gain, K., is to drive the cameras at higher velocities
when the error is larger. The derivative gain, Kd, helps accelerate the response when it is
falling behind and decelerates the response when it is overtaking the stimulus, which can
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Figure 14: Block diagram of the vergence system.
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Figure 15: Response to a step in disparity: Rise time is the earliest time the response reaches
90% of its final (steady-state) value, and settling time is the earliest time the response stays
within 5% of its final value. Note that the sample interval is 0.1 seconds.

speed the response. However, a higher derivative gain produces oscillatory response. If KP
is increased, the overshoots become larger. If Kd is increased, oscillations appear in the
steady-state response; if Kd/Kp is too large the system becomes unstable. The time delay
in the system contributes further to oscillations if the response frequency is so high that
responses are large enough to overshoot before they can be detected.

Analogous to the step stimulus, the sinusoidal stimuli were generated by rotating the
non-verging camera sinusoidally. If the verging camera is held still, this generates a sinu-
soidally oscillating disparity signal. Thus, the target vergence angle was defined by the
angle of the non-verging (stimulating) camera.

The effect of the time delay on phase lag can be seen by comparing the 0.05 Hz and 0.1
Hz responses in Figure 16: the same time lag contributes proportionately more to the phase
lag at higher frequencies, since the time course of each -cycle is shorter at higher frequencies.

The vergence responses to sinusoidal stimuli were measured for frequencies ranging from
0.05 to 2 Hz. The gain and the phase shift of the system's responses are summarized in
the Bode plot of Figure 17. The system's behavior suggests that it may be a second order
system. However, the constant time delay seems to produce a linear phase shift, as shown
in Figure 18, since a constant time delay contributes proportionately more to phase shift

at higher frequencies.
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Figure 16: Response to sinusoidal disparity stimulus.
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Figure 17: Bode plot: The gain (B) and phase shift (degrees) of the vergence responses
are shown for sinusoidal stimuli of frequencies ranging from 0.05 to 2 Hz. Gain (dB) =log , response amplit ude
20 * lOglO t sim ls amplitude and the phase shift is the difference in the phase angle of
the two signals.
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Figure 18: The phase shift (degrees) of the vergence responses is shown plotted against
frequency on a linearly scaled abscissa, in contrast with the logarithmic abscissa of the
Bode plot, to show that the phase shift seems to be linear. This character of the phase shift
arises from a constant time delay, since it contributes proportionately more to phase shift
at higher frequencies.

7 Conclusion

We have argued that vergence is important for active vision systems, and have discussed
general issues in the design of vergence control systems. We have also described in detail the
application of these ideas to develop a real-time vergence control system for the Rochester
Robot.

The error estimator for the vergence system is a variant of the cepstral disparity esti-
mator of Yeshurun and Schwartz [Yeshurun and Schwartz, 1989]. The estimator has been
shown to be capable of remarkable accuracy, in the best case achieving an RMS error of
a small fraction of a pixel. It is simple enough that with a small investment in special
hardware it can be computed at speeds comparable to the video frame rate. The cepstral
method of disparity estimation can be shown to be equivalent to autocorrelation of images

- that have been adaptively enhanced to sharpen their autocorrelation functions. It is thus
closely related to phase correlation.

The demonstration system uses a position controller that generates smooth vergence
camera movements in response to smooth changes in the desired vergence angle. This
system also responds reasonably (but suboptimally) to step changes in target vergence
angle. Optimal response to step stimuli could be achieved by saccadic vergence movements.

Vergence esponses have yet to be integrated with other gaze controls. Future work in
the area of gaze control will concentrate on the questions: What gaze controls are prim-
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itive, what cues serve them best, and how do visually-mediated controls interact? More
sophisticated controls can arise with complex inputs such as optic flow.

Concentrating on visual cues alone is an interesting constraint, but we have not lost
sight of the fact that they probably are, in successful systems, combined into a model of
target motion which may be used to control gaze (Brown, 1990a; Coombs, 1989a]. There are
also non-visual cues such as head accelerations that can-inform gaze stabilization systems.
Using such non-visual cues calls for models of the observer's physical plant so that the proper
compensating movements may be made. Furthermore, the appropriate camera movements
to compensate for head motion depend on the gaze location, and so a representation of the
location of objects in three dimensions (or at least depth) is needed. There is increasing
evidence that human and other primate gaze control systems do indeed make use of such
cues [Paige, 1990; Snyder et al., 1990].

Interaction of controls can be simple (say by preemption), or more complex (with con-
trols awr.i'e of and cooperating with the actions of other controls [Brown, 1990b; Brown,
1990a; Brown, 1990c]). The former approach requires breaking down the controls into either
orthogonal, non-interacting primitives or being content to have one control acting at a time.
The latter approach requires more sophisticated modeling of the effects of interaction.

Another area for future exploration concerns the use of camera systems that offer ver-
gence and fixation as reliable primitives. One obvious application is the support of stereo
systems with limited fusional ranges [Olson, 1990]. More generally, systems that fixate must
choose appropriate targets for the task they are performing. Thus gaze control at the high-
est level can be viewed as a resource management problem, in which limited sensory and
computing hardware must be allocated so as to maximize the usefulness of the recovered
information [Rimey and Brown, 1990].
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A Understanding the cepstral filter

Our experience with the cepstral disparity estimator confirms Yeshurun and Schwartz' ob-
servation that the method is remarkably robust. The standard analysis (summarized in
Section 5.1) explains what the algorithm does, but does not yield much insight as to why
it .works so well. We feel that the algorithm is better understood by exploring its relation
to autocorrelation; this view also suggests an alternative algorithm. The argument is as
follows:

The cepstrum of a signal is computed by forming the power spectrum, taking the log-
arithm of each pixel, and Fourier transforming the result. Note that the power spectrum
is just the Fourier transform of the autocorrelation function of the signal, and (like the
autocorrelation function) is both real-valued and even symmetric. The forward and in-
verse Fourier transforms are equivalent for even, real-valued input functions. Therefore,
the second Fourier transform in the cepstrum is equivalent to an inverse transform. The
cepstrum, then, is the inverse transform of the log of the forward transform of the auto-
correlation function. Without the logarithm step, therefore, the algorithm would simply
compute the autocorrelation function.

The effect of taking the logarithm before the inverse Fourier transform can be seen by
rewriting the log power spectrum as

log IFI2 = log IF12FF*= 
F12

(where F* is thc: complex conjugate of F). The right-hand side of this equation can be
recognized as the power spectrum (i.e. the Fourier transform of the autocorrelation) of a
filtered version of the original function. In other words, the cepstrum can be thought of
as autocorrelation with an adaptive (non-linear) prefilter. The prefilter is compressive in
the frequency domain-it tends to make the power spectrum more nearly uniform, reducing
the contribution of narrowband signals while leaving broadband signals relatively unaltered.
Narrowband signals include such things as periodic patterns and large smooth blobs, both
of which are poor correlation targets. By suppressing narrowband signals, therefore, the
prefilter makes the input a better, less ambiguous correlation target. The effect can be seen
by applying the appropriate prefilter to images that contain both good and bad autocor-
relation targets, as shown in Figure 19. As can be seen, the periodic part of the signal
has been largely suppressed, while parts of the image that have unique matches have been
enhanced.

This view of the cepstrum suggests that any non-linear compressive function applied to
the power spectrum should have a similar sharpening effect. Informal experiments suggest
that this is indeed the case. For example, replacing the log step in the cepstral algorithm
with a fourth root or arc tangent produces results that do not differ greatly from the
standard cepstrum.

The ultimate compressive operator would be one that takes all input values to a constant.
The Fourier transform of a constant is an impulse at (0, 0), so this operator would provide
the unhelpful information that the image matches itself perfectly at a disparity of zero. In
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a) b)

Figure 19: a) an image f(x, y) containing both good and bad correlation targets. Both
types of targets have adequate high frequency content, but the periodic grid is subject to
false matches both horizontally and vertically. b) The same image after application of the
cepstral-equivalent filter. This image is a much clearer correlation target.

order to get useful disparity information by this method one must find a way to preserve
the phase information that is normally destroyed by formation of the power spectrum. For
example, one might compute the transformed cross-correlation of the left and right images
by multiplying the transform of one times the conjugate of the transform of the other, and
then rescale so that all entries in the resulting complex array have the same magnitude.
This intuitively derived algorithm can be rigorously justified as a type of deconvolution, as
follows:

The cepstral disparity estimator depends on the assumption that the right and left
images differ only by a shift of dh horizontally and d, vertically. Given this assumption,
however, a more direct approach is possible. The stated assumption is equivalent to the
formula

R(x, y) = L(x, y) * b(x - dh, Y - d,)

where * represents convolution. Fourier transforming and solving for the disparity term
gives

e-j2r(ud+vd) - FR(u, v)
FL (u, v)

or

b(x - dh,y- d,) = F-' FR(u, v)FL(u, v))IFL(u, v)l2 ]

By hypothesis, however, FL and FR have identical magnitude spectra-they differ only in
phase, because the left and right images differ only by a shift. Thus the division can be
rewritten as

r 2(u, v)F(u, v)I FR(u, v)FL(u, v)1, '
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which is the Fourier transform of the crosscorrelation of the right and left images, rescaled
so that all entries have magnitude one. That is, it is exactly the procedure suggested above
by intuition. What was described there as a peak-sharpening operation turns out to undo
the convolution of L(x, y) with the disparity delta function.

Like the cepstrum, the deconvolution disparity estimator can be understood as corre-
lation with an adaptive prefilter. In this case the effect -of the prefilteris to obliterate the
magnitude spectra of each image, so that the images differ only in phase. Deconvolution
is thus equivalent to correlating phase images, and the technique is well known under the
name of phase correlation. Kuglin and Hines [Kuglin and Hines, 19751 first described the
algorithm and showed that the height of the correlation peak and the distribution of the
background values can be used to estimate the extent to which the two images do in fact
differ by a shift. Pearson et al. [Pearson et al., 1977] describe a cleverly optimized hardware
implementation of the algorithm that transforms 128 x 128 sample windows at 30 frames
per second.

In theory, phase correlation should be somewhat faster than the Yeshurun and Schwartz
cepstral disparity estimator for a given sample window size. This is because the cepstral
estimator is based on Fourier transforms of windows of size h x 2w, while phase correlation
replaces those with fewer than twice as many transforms of windows of size h x w. Since the
running time of the Fast Fourier transform (FFT) rises more than linearly with increasing
sample window size, converting to phase correlation should reduce the time needed to
estimate the disparity. However, this neglects the problem of wraparound. Like all Fourier-
based approaches to discrete correlation, phase correlation (and the cepstrum) compute
wrapped correlations, which can lead to ambiguities in the sign of the disparity. In the case
of the cepstrum, the ambiguity can be resolved without padding by the strategy described
in Appendix B. For phase correlation, however, this strategy fails. The padding required
to prevent wraparound overwhelms the apparent speed advantage of the phase correlation
estimator.

B Efficient Computation of the Cepstral Filter

The main body of the cepstral algorithm consists of a 2-D FFT, a point transform (the
log of the power spectrum), and a second 2-D FFT. In this respect it resembles standard
linear filtering, so standard optimizations apply. The implementation used on the Rochester
Robot transforms first the columns and then the rows using a one dimensional decimation-in-
frequency (DIF) FFT that expects normally ordered input and produces bit-reverse ordered
output. After the point transform, a DIT FFT is used to transform first the rows and then
the columns, undoing the bit-reversal at the same time. The point transform approximates
log 2 n by counting the number of bits in the (real-valued) product of each pixel and its
complex conjugate. Although the ADSP-2100 lacks floating point instructions, it does
have a barrel shifter that provides single-cycle normalization. Therefore, counting the bits
requires only two or three instructions per point.

The most important optimization treats wraparound in the transform domain. A dis-
crete Fourier transform (DFT) of size h x 2w can only handle frequencies in the range -h/2
to h/2 vertically and -w to w horizontally. In the continuous case the cepstral transform
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produces peaks at (±(w + dh), ±d,), so positive horizontal disparities will produce peaks
falling outside the range of the DFT. Since DFTs are circular, positive disparities will wrap
around to the opposite ends of the horizontal frequency axis. The result is that disparities
of (dh, d,) and (-dh, -d,) will be indistinguishable.

The standard solution to this problem is to widen the input (the spliced image) by
padding with zeros. However, doing so substantially increases the eost -,f the -algorithm
in both time and space. For applications like vergence and stereopsis a more economical
solution is possible. In these cases the vertical disparity is known to be small-specifically,
it can be assumed to be in the interval ±h/4. The disparity peaks can be "tagged" by
introducing an artificial vertical disparity of +h/4, i.e. by "rolling" the right-hand sample
window upward by 1/4 of its height. This is achieved by transforming the right-hand sample
window by moving row m to row (m + h/4) mod h. After the cepstral transform, peaks are
located and interpolated as usual. Since the vertical disparity should be positive, a negative
vertical disparity indicates that the horizontal disparity has wrapped around and hence has
incorrect sign.

A final optimization exploits the fact that in the second 2-D FFT the final set of column
transforms only needs to be done in the region that will be searched for peaks. This region
consists of the columns representing horizontal frequencies between w/2 and w. This makes
it possible to eliminate 3/4 of the column transforms.

All of the optimizations described in the previous section are incorporated into the EU-
CLID implementation of the cepstral disparity estimator. Sixteen-bit fixed-point arithmetic
was used throughout. The DIT and DIF FFTs are implemented as assembly language sub-
routines, as is the procedure that computes the power spectrum and takes its log. All other
code is written in C. This version of the estimator computes a disparity in 32 x 32 windows
in 51 milliseconds, not counting the 8 milliseconds (average) necessary to acquire the VME
bus and extract the sample windows from the MaxVideo frame buffer.
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